Improving impact with smallholders

Cam McDonald, Jeff Corfield, Neil MacLeod, Shaun Lisson July 2013

CSIRO ECOSYSTEM SCIENCES, BRISBANE, AUSTRALIA www.csiro.au

Outline of presentation

- Methodology for introducing new technologies to smallholders
 - Complexity of smallholder farms
 - Brief outline of traditional methods
 - An alternative integrated approach
 - How modelling can assist in the process
 - Strategies for achieving Research results AND lasting Impact

Complexity of smallholder farm

Farm complexity

- Overall complexity
 - Climate
 - Land area, land fertility
 - Labour resources
 - Crops and animals
 - Cash resources

Farm complexity

- Biophysical complexity
 - Suitable crops and forages
 - Animal management
 - Manure management
 - On and Off farm labour
 - Food supply

Traditional method

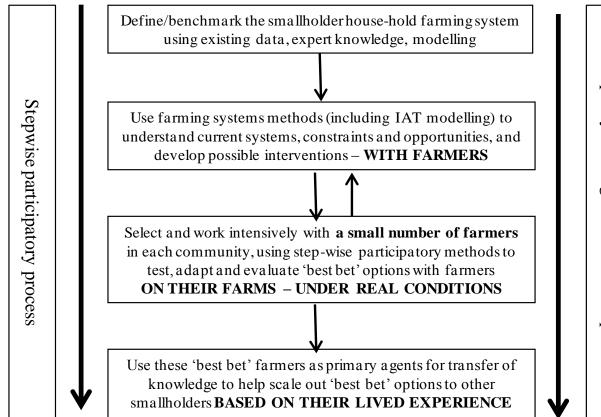
- Work done by or with local Universities, Agricultural Depts, and NARS
- No real assessment of smallholders needs or capacity to implement any new technology
- New technology taken to smallholders (typically as onfarm demonstrations or trials, or machinery)
- No assessment of risk and little on-going support
- Little lasting impact

Example from Indonesia

- Tree legumes had been introduced at some time in the past
- Smallholders hardly using it
- No knowledge of its potential benefits
- Now a major part of their farm activity

Traditional method

- Scaleout
 - There have been some successes
 - Assumed there would be a natural spread
 - This can happen, but rarely
- Problems
 - System too complex for simple solutions
 - Difficult to demonstrate potential benefits
 - Little assessment of risk
 - No on-going support



Potential solution

- Alternative integrated approach
 - Collect detailed baseline information
 - Integrate any new technology into farming system
 - Support for several years
 - Let farm experiences direct research activity
- Modelling
 - Assess potential benefits and risks
 - Can assess a wide range of options

Alternative integrated approach

- Benchmarking
 - Household data
 - Biophysical data (crops, forages, animals)
 - Economic data
 - Social and cultural information
- Method
 - Not as simple as it sounds, farmers often have no records
 - General surveys of little use (e.g. % of farmers keeping cattle)
 - Need quite detailed information for modelling and understanding
 - Need to cross check information given

- Household data
 - People in the family
 - Labour input to on-farm and off-farm activities
 - Labour activities by age and gender
 - Goals of the household
 - Living costs (school fees, govt fees, etc)
 - Non-farm income
 - Farm size

- Crop and forage data
 - What crops and forages grown
 - What area of each normally grown
 - Typical yields in good and bad years
 - Management activities (e.g. Fertiliser, irrigation)
 - Input costs and revenue
 - Home consumption
 - Labour requirements
 - Constraints/opportunities

- Animal data
 - Types of animals kept (goats, cattle, etc)
 - Purpose animals kept (breeding, trading, food supply)
 - Calving and growth rates
 - Feed supply (across the year)
 - Management (weaning, selling, mating)
 - Labour requirements
 - Input costs (supplements, veterinary costs)
 - Constraints/opportunities

Integrated approach – case study

- Mertak village, Lombok, Indonesia
 - 3-4 month wet season
 - 1 ha lowland for rice, soybean
 - 1 ha upland for grazing and 'cut & carry'
 - Severe shortages of animal feed in dry season
 - Regular crop failures
 - Farmers wanted a more reliable income

Integrated approach – case study

Activity / Land type		J	F	M	A	Μ	J	J	Α	S	0	N D
Food crops	Lowland (1 ha)	Rice, Soybean		Soybean						Rice, Soyb ean		
Grazing are	ea (1ha)				_			_			_	
Calving / W	Veaning		Wean	ing	Calvir	ng		Mating				
Critical feed	-									Feed s	shorta	ge
On–farm cut	and carry	Grass	5		Sesbania							Grass
Off-farm resid											s, Rice cks pe year)	
Conserved fee of us	-								I	Rice, S	oybea	.n
Peak labour Cattl										eed co		
Peak labour Cropp	-	Weeding	Harve	esting								Prep'n and sowing

- Essential to link all the resources (on- & off-farm)
- Many good crop and animal models, but not whole farm models
- The smallholder system is tightly constrained
- Often there are trade-offs between activities
- Models can explore potential benefits, risks and tradeoffs
- Integrated Analysis Tool (IAT) developed for this purpose

- Baseline
 - Adapt, calibrate and parameterise whole farm model
 - Simulate existing system
 - Identify constraints (e.g. Food security, animal feed) and risk
 - Confirm results with farmers and extension/research personnel

Language		-		
Australian	 Apply ne 	w Language	Currenc	LAK'000 -
	Climate regi	ion : L	.aos	-
arm, People and L	abour information -			
Form land &	Family member labour supp		tivities &	Farm overheads and living costs
-	1	NAT TO REAL		
stails of crops gro	wey crop costs & lat	bour information, fo	dder purchases —	
Grain Grop		bour information, fo	Other-crop	
	wr, crop costs & lai Forage details		CALCULATION CONTRACTOR OF	Purchased fodder
Grain Crop details		nour information, fo	Other-crop	Purchased fodder

% Crop residue retention	Cut & carry kg/day	Cattle sold over 5 years	Transported fodder (truckloads)	Labour	Cash balance Million RP
Baseline: 0.75ha ri 30% of soybean	ice in wet, 0.5ha soy 25	bean in early dry, 1he Sold 6-7 3-4 on hand	a upland grazing, 2 com 3-4 truckloads/year	<i>ys, 2 calves</i> Just enough	-3.0

- Intervention strategies
 - With same group, Identify potential strategies to overcome constraints
 - Model whole farm system with potential interventions, singularly and cumulatively
 - Assess the potential impact on target constraint, and the potential risk of failure
 - Develop a range of 'best bet' options
 - Identify possible 'best bet' farmers

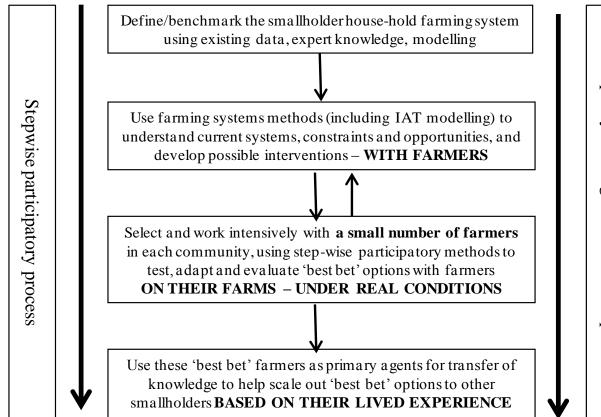
Integrated approach – case study

Activity / L	and type	J	F		М	I	4		Μ	J		J	Α	S	0	N D
Food crops	Lowland (1 ha)	Rice, Soybean Soybean					Short term forage legume				Rice, Soyb ean					
Grazing are	ea (1ha)	Setaria, Verano and Seca stylo for native pasture upland area														
Calving / V	Veaning		W	eanin	ıg		Calv	ing				Matin	ıg			
Critical feed perio	e													Feed s	shortag	<u>ge</u>
		Gras	s		S	Sesbani	ia									
On–farm cut	and carry	Setaria and	Setaria and Elephant grass for lowland bunds – small forage bank for backyard, more <i>Gliricidia</i> around upland Grass													
Off-farm resid														tru	s, Rice cks pe /ear)	
0	1 (H	Rice, S	oybea	n
Conserved feed use	-									Pr				ng of o y wean		ıd
Peak labour Cattl	-													eed co d hand		
Peak labour Cropp	-	Weeding	Ha	arves	ting											Pre p'n and so win g

% Crop residue retention	Cut & carry kg/day	Cattle sold over 5 years	Transported fodder (truckloads)	Labour	Cash balance Million RP					
Baseline: 0.75ha rice in wet, 0.5ha soybean in early dry, 1ha upland grazing, 2 cows, 2 calves										
30% of soybean	25	Sold 6-7 3-4 on hand	3-4 truckloads/year	Just enough	-3.0					
Scenario 1: plant 2	00m of tree legume,	plus 0.5ha of setaria	and stylo (for cut & ca	rry)	·					
30% of soybean	25	Sold 6-7 3-4 on hand	0 truckloads/year	Sufficient	-0.7					
	•	1			1					
	-									
	-									

% Crop residue retention	Cut & carry kg/day	Cattle sold over 5 years	Transported fodder (truckloads)	Labour	Cash balance Million RP
Baseline: 0.75ha ri	vs, 2 calves	-			
30% of soybean	25	Sold 6-7 3-4 on hand	3-4 truckloads/year	Just enough	-3.0
Scenario 1: plant 2	00m of tree legume, j	plus 0.5ha of setaria	and stylo (for cut & ca	rry)	
30% of soybean	25	Sold 6-7 3-4 on hand	0 truckloads/year	Sufficient	-0.7
Scenario 2: increas	e number of cows to	4, increase cut & ca	rry to 35kg/day	•	
30% of soybean	35	Sold 10-11 6-7 on hand	3-4 truckloads/year	Just enough	2.8
		•	•	•	

- Discussion groups
 - Farmers discuss strategies
 - Farmers suggest their strategies



% Crop residue retention	Cut & carry kg/day	Cattle sold over 5 years	Transported fodder (truckloads)	Labour	Cash balance Million RP
Baseline: 0.75ha ri	ce in wet, 0.5ha soyb	ean in early dry, 1hc	upland grazing, 2 cow	s, 2 calves	
30% of soybean	25	Sold 6-7 3-4 on hand	3-4 truckloads/year	Just enough	-3.0
Scenario 1: plant 2	00m of tree legume, j	plus 0.5ha of setaria	and stylo (for cut & ca	rry)	•
30% of soybean	25	Sold 6-7 3-4 on hand	0 truckloads/year	Sufficient	-0.7
Scenario 2: increas	e number of cows to	4, increase cut & ca	rry to 35kg/day		
30% of soybean	35	Sold 10-11 6-7 on hand	3-4 truckloads/year	Just enough	2.8
Scenario 3: Scenar	io 2 plus Ammoniate	40% of rice straw, r	etain 70% of soybean	•	
70% of soybean	35	Sold 10-11 6-7 on hand	2-3 truckloads/year	Sufficient	4.6
Scenario 4: STOP	GROWING RICE!, 0	.75ha soybean, no se	cond crop, buy rice for	consumption	
70% of soybean	35	Sold 11-12 7-8 on hand	2-3 truckloads/year	Surplus	10.3

Alternative integrated approach

Integrated approach – best bet farmers

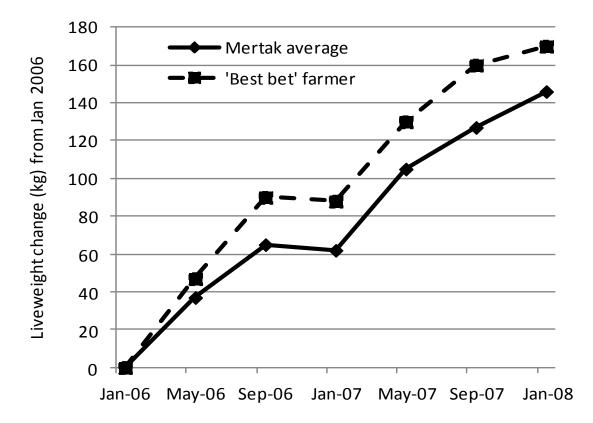
- Start with a small number of farmers
- Describe possible intervention strategies
- Address any concerns and adapt strategies if necessary
- Let them choose which strategies to test

Integrated approach – best bet farmers

- Provide inputs if necessary
- Provide on-going support
- Identify any research questions
- Move farmers from animal 'keepers' to animal 'producers'

Best bet farmers – Case study

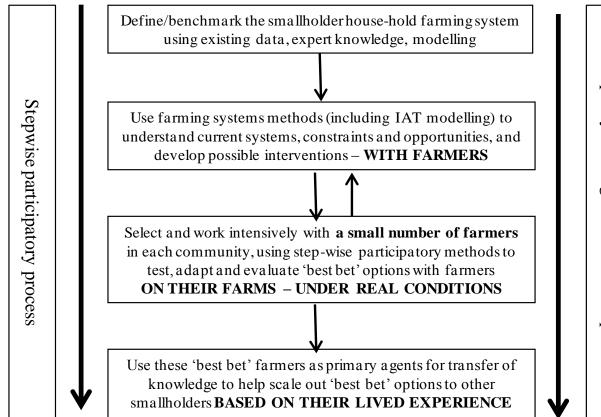
- Started small
- Quickly saw the benefits and expanded their areas
- Use of tree legume increased to 80% over 3 years
- Some farmers started early weaning
- Rice straw ammoniation not suitable due to labour constraints



Integrated approach – Impact

- Did not increase cattle numbers
- Reduced demand for off-farm feed
- Increased animal live weight gain
- Dry season labour decreased from 6-8hrs/day to 1-2hrs/day
- Wet season labour demand was also less

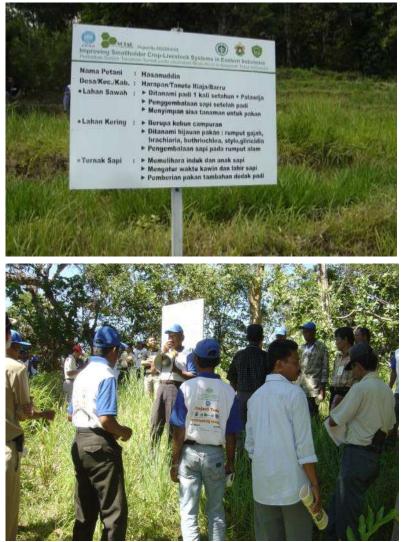
Integrated approach – Impact



Integrated approach – Impact

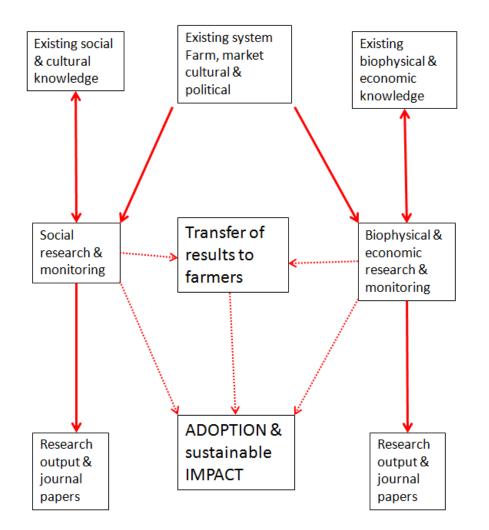
- Farmers spent extra time weeding rice, which led to increased yields
- Increased their income by 50-300% over 3 years
- 40% of farmers put more focus on cattle (some farmers started trading)
- 80% continued with interventions
- Reduction in disputes (feed, theft)
- Increased confidence in decision making
- Extended house, bought motor bikes (better schools, off-farm work, more income)

Alternative integrated approach



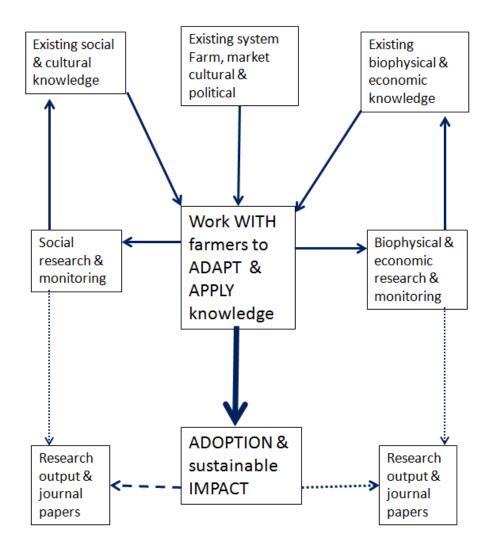
Integrated approach – scale out and scale up

- Unrealistic to have major scale out in a 3-4 year project
- Use the 'Best bet' farmers to inform other farmers in the village
- Hold field days and use 'Best bet' farmers as agents

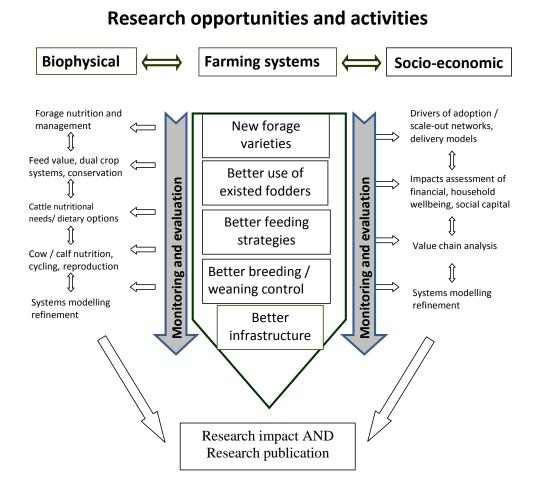


Integrated approach – scale out and scale up

- New farmers must have support, so important to have well trained extension officers
- Provides capacity building in systems thinking and modelling
- Important the 'whole package' is transferred out e.g. you need forages before introducing early weaning
- Can employ your own extension officers but better to get technology into institutions



Traditional approach – Impact vs Research



Integrated approach – Impact vs Research

Dual approach – Impact vs Research

Concluding remarks

- The success
 - Technology now taken up by 2-3000 Indonesian smallholders
 - Similar technology and methodology implemented in north and south Vietnam
 - IAT model now being used in Laos, Zimbabwe and west Africa
- Differences to other PAR approaches
 - Use of a 'whole farm' model to assess potential benefits, risks and trade-offs of a wide range of options
 - Technology integrated into the existing farming system
 - On-going support provided for a number of years

Cam McDonald CSIRO Ecosystem Sciences

t +61 427 387 040 e cam.mcdonald@csiro.au

Thank you

ADD BUSINESS UNIT/FLAGSHIP NAME www.csiro.au

